BigO notation

From Computer Science Wiki
Jump to: navigation, search
Case studyDevote time and attention to gaining knowledge of (an academic subject), especially by means of books notes[1]


Big O notation is the language we use for articulating how long an algorithm takes to run. It's how we compare the efficiency of different approaches to a problem.

With big O notation we express the runtime in terms of—brace yourself—how quickly it grows relative to the input, as the input gets arbitrarily large.

Let's break that down:

how quickly the runtime grows—Some external factors affect the time it takes for a function to run: the speed of the processor, what else the computer is running, etc. So it's hard to make strong statements about the exact runtime of an algorithm. Instead we use big O notation to express how quickly its runtime grows.

relative to the input—Since we're not looking at an exact numberA unit of abstract mathematical system subject to the laws of arithmetic., we need to phrase our runtime growth in terms of something. We use the size of the input. So we can say things like the runtime grows "on the order of the size of the input" (O(n)O(n)) or "on the order of the square of the size of the input" (O(n^2)O(n2​)).

as the input gets arbitrarily large—Our algorithm may have steps that seem expensive when nn is small but are eclipsed eventually by other steps as nn gets huge. For big O analysis, we care most about the stuff that grows fastest as the input grows, because everything else is quickly eclipsed as nn gets very large. If you know what an asymptote is, you might see why "big O analysis" is sometimes called "asymptotic analysis." Big O notation is like math except it's an awesome, not-boring kind of math where you get to wave your hands through the details and just focus on what's basically happening.