Modelling and simulating a more complex system

From Computer Science Wiki
Jump to navigation Jump to search
This a problem set for you to work through [1]

This is a problem set. Some of these are easy, others are far more difficult. The purpose of these problems sets are:

  1. to build your skill applying computational thinking to a problem
  2. to assess your knowledge and skills of different programming practices


What is this problem set trying to do[edit]

This problem set is linked to modeling and Simulation. We are applying our knowledge and understanding of dictionaries, conditionals, computational thinking & problem-solving and iteration.

Please understand how this simulation works.

The Problem[edit]

This problem set has four different parts.We are starting simple and working our way up to more complexity. Please make sure you complete part one of our problem set.

Part 1[edit]

How you will be assessed[edit]

Your solution will be graded using the following axis:


Scope

  • To what extent does your code implement the features required by our specification?
  • To what extent is there evidence of effort?

Correctness

  • To what extent did your code meet specifications?
  • To what extent did your code meet unit tests?
  • To what extent is your code free of bugs?

Design

  • To what extent is your code written well (i.e. clearly, efficiently, elegantly, and/or logically)?
  • To what extent is your code eliminating repetition?
  • To what extent is your code using functions appropriately?

Style

  • To what extent is your code readable?
  • To what extent is your code commented?
  • To what extent are your variables well named?
  • To what extent do you adhere to style guide?

References[edit]

A possible solution[edit]

Click the expand link to see one possible solution, but NOT before you have tried and failed!

# ========= PART ONE ============
ants =  {
    
    1: {
    "life": "alive",
    "state": "looking for food"
    },
    2: {
    "life": "alive",
    "state": "bringing food to nest"
    }
}

print("Ant 1 is: ", ants[1])
print("Ant 2 is: ", ants[2])

# ================ PART TWO ===============

ants =  {
    
    1: {
    "life": "alive",
    "state": "looking for food",
    "moving": "yes",
    "movement direction": "North"
    },
    2: {
    "life": "alive",
    "state": "bringing food to nest",
    "moving": "yes",
    "movement direction": "North"
    }
}

print("Ant 1 is: ", ants[1])
print("Ant 2 is: ", ants[2])

# ======== PART THREE =========

ants =  {
    
    1: {
    "life": "alive",
    "state": "looking for food",
    "moving": "yes",
    "movement direction": "North",
    "current position x": 0,
    "current position y": 0

    },
    2: {
    "life": "alive",
    "state": "bringing food to nest",
    "moving": "yes",
    "movement direction": "North",
    "current position x": 100,
    "current position y": 100
    }
}

print("Ant 1 is: ", ants[1])
print("Ant 2 is: ", ants[2])

# ======== PART FOUR =========

ants =  {
    
    1: {
    "life": "alive",
    "state": "looking for food",
    "moving": "yes",
    "movement direction": "North",
    "current position x": 0,
    "current position y": 0

    },
    2: {
    "life": "alive",
    "state": "bringing food to nest",
    "moving": "no",
    "movement direction": "North",
    "current position x": 100,
    "current position y": 100
    }
}

print("Ant 1 is: ", ants[1])
print("Ant 2 is: ", ants[2])

for i in range(0,5):
    print("=== Second ", i, "===")
    for j in ants.keys(): 
        print("Ant ", j, " moving: ", ants[j]["moving"])
        print("Ant ", j, " moving direction: ", ants[j]["movement direction"])
        print("Ant ", j, " life: ", ants[j]["life"])
        print("Ant ", j, " state: ", ants[j]["state"])
        print("Ant ", j, " current position x ", ants[j]["current position x"])
        print("Ant ", j, " current position y: ", ants[j]["current position y"])

Consider the merits or otherwise of an argument or concept. Opinions and conclusions should be presented clearly and supported with appropriate evidence and sound argument.

Produce a plan, simulation or model.

Give a specific name, value or other brief answer without explanation or calculation.