Genetic Algorithms: Difference between revisions

From Computer Science Wiki
 
(5 intermediate revisions by 2 users not shown)
Line 13: Line 13:
# Algorithm repeated
# Algorithm repeated
# Until a good fit obtained
# Until a good fit obtained
== Use of genetic algorithms ==
* [https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications Click here for a fairly good list]
* [https://stackoverflow.com/questions/1538235/what-are-good-examples-of-genetic-algorithms-genetic-programming-solutions Click here for several good examples (scroll down)]
* [https://www.brainz.org/15-real-world-applications-genetic-algorithms/ here are some short examples of GA]


== Some videos ==  
== Some videos ==  
Line 41: Line 47:


* [[Brute force approach]]
* [[Brute force approach]]
* [[Combinatorial optimization]]
* [[Computational intractability]]
* [[Computational intractability]]
* [[Convergence]]
* [[Convergence]]
* [[Crossover / crossover operator]]
* [[Crossover / crossover operator]]
* [[Elitism]]
* [[Elitism]]
* [[Exploration vs exploitation]]
* [[Fitness / fitness function / fitness landscape]]
* [[Fitness / fitness function / fitness landscape]]
* [[Heuristics]]
* [[Heuristics]]
* [[Hill climbing]]
* [[Initialization parameters]]
* [[Local extrema]]
* [[Mating pool]]
* [[Mutation / mutation rate]]
* [[Novelty search]]
* [[Offspring]]
* [[Optimization]]
* [[Optimization]]
* [[Population]]
* [[Population]]
* [[Premature convergence]]
* [[Premature convergence]]
* [[Problem space]]
* [[Problem space]]
* [[Ranking]]
* [[Roulette wheel selection]]
* [[Roulette wheel selection]]
* [[Selection strategy]]
* [[Selection strategy]]
* [[Simulated annealing]]
* [[Simulated annealing]]
* [[Stochastic universal sampling]]
* [[Termination condition]]
* [[Termination condition]]
* [[Tour]]
* [[Tournament selection]]
* [[Truncation selection]]


== References ==
== References ==

Latest revision as of 06:16, 9 May 2022

Advanced programming[1]

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection[2]

  • Please first review the characteristics of algorithms.
  • Please then review the characteristics of heuristics.

The basic pattern of genetic algorithms[edit]

  1. A random set of solutions would be generated on the sample documents
  2. And tested against the human labelling
  3. Best fit solutions retained
  4. New generation created by mutating/crossing
  5. Algorithm repeated
  6. Until a good fit obtained

Use of genetic algorithms[edit]


Some videos[edit]



Helpful resources[edit]


Terms associated with genetic algorithms[edit]

References[edit]