Cost function: Difference between revisions
Mr. MacKenty (talk | contribs) No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
<iframe width="560" height="315" src="https://www.youtube.com/embed/0twSSFZN9Mc" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> | <iframe width="560" height="315" src="https://www.youtube.com/embed/0twSSFZN9Mc" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> | ||
</html> | </html> | ||
Revision as of 09:26, 29 January 2023
Introduction
In machine learning, a cost function is a function that is used to optimize a model's parameters by minimizing the error between the predicted output and the actual output. The cost function is used in training a machine learning model to find the set of parameters that minimizes the error between the predicted output and the actual output. The cost function is typically defined as a function of the model's parameters and the training data, and it is used to guide the optimization process by providing a measure of how well the model is doing on the training data.
A fairly decent video