Tree: Difference between revisions

From Computer Science Wiki
(Created page with "right|frame|Programming basics<ref>http://www.flaticon.com/</ref> In computer science, a tree is a widely used abstract data type (ADT)—or data structur...")
 
 
(9 intermediate revisions by the same user not shown)
Line 6: Line 6:




== Image of a queue ==  
== Image of a tree ==  




[[File:Data Queue.svg.png]]<ref>This Image was created by User:Vegpuff.If you are using the image under the creative commons share alike license please credit the photo Vegpuff/Wikipedia and include a link to this page. No explicit permission is needed from me, but an email if my work has been of help to you.If you dont want to release your work under a creative commons license, please mail me at vegpuff@gmail.com or catch me at my twitter stream for a custom license. - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7586271</ref>
[[File:Binary tree.svg.png]]


== Access methods of a tree ==
== tree vocabulary ==
* enqueue
* root node
* dequeue
* parent node
* isEmpty
* child node
* peek
* leaf node


== Practical applications of a tree ==  
== Practical applications of a tree ==  


* Printer queues
* Trees can be used to store data that has an inherent hierarchical structure. For example, an operating system may use a tree for directories, files and folders in its file management system.
* Computer modelling of physical queues (like in a supermarket)
* They are dynamic, which means that it is easy to add and delete nodes.
* They are easy to search and sort using standard traversal algorithms.
* They can be used to process the syntax of statements in natural and programming languages so are commonly used when compiling programming code.


== Tree - video example ==  
== Tree - video example ==  


[https://www.youtube.com/watch?v=qH6yxkw0u78  This video provides a basic introduction to trees. It also summarizes, very nicely, other data structures.]
[https://www.youtube.com/watch?v=qH6yxkw0u78  This video provides a basic introduction to trees. It also summarizes, very nicely, other data structures.] Please keep in mind the example at the beginning is not a [[binary tree]], but binary trees are discussed later.  Ignore the discussion about cousins and uncles. It's ridiculous. But the rest of the video is really good.
 
 
== code sample ==
<syntaxhighlight lang="python">
class Node:
    def __init__(self, data):
        self.data = data
        self.children = []
 
    def add_child(self, child):
        self.children.append(child)
 
    def __repr__(self):
        return f"Node({self.data})"
 
class Tree:
    def __init__(self, root_data):
        self.root = Node(root_data)
 
    def add_node(self, parent_data, child_data):
        parent_node = self.find_node(parent_data)
        if parent_node:
            parent_node.add_child(Node(child_data))
        else:
            print(f"Parent node with data '{parent_data}' not found.")
 
    def find_node(self, target_data, current_node=None):
        if current_node is None:
            current_node = self.root
 
        if current_node.data == target_data:
            return current_node
 
        for child in current_node.children:
            result = self.find_node(target_data, child)
            if result:
                return result
 
        return None
 
    def display(self, current_node=None, level=0):
        if current_node is None:
            current_node = self.root
 
        print(' ' * 4 * level + '|-- ' + str(current_node.data))
        for child in current_node.children:
            self.display(child, level + 1)
 
 
 
    def __repr__(self):
        return f"Tree({self.root})"
 
# Create a tree with root node data 'A'
tree = Tree('A')
 
# Add nodes to the tree
tree.add_node('A', 'B')
tree.add_node('A', 'C')
tree.add_node('B', 'D')
tree.add_node('B', 'E')
tree.add_node('C', 'F')
tree.add_node('C', 'G')
 
# Find a node in the tree
found_node = tree.find_node('F')
print(found_node)  # Output: Node(F)
 
# Try to add a node with a nonexistent parent
tree.add_node('X', 'Y')  # Output: Parent node with data 'X' not found.
 
# Display the tree using simple ASCII art
tree.display()
 
</syntaxhighlight>


== Standards ==  
== Standards ==  
Line 36: Line 113:


* [[Abstract data structures]]
* [[Abstract data structures]]
* [[binary tree]]
== External Links ==
[http://cslibrary.stanford.edu/110/BinaryTrees.html high level discussion of binary trees]


== References ==
== References ==

Latest revision as of 06:28, 26 April 2023

Programming basics[1]

In computer science, a tree is a widely used abstract data type (ADT)—or data structure implementing this ADT—that simulates a hierarchical tree structure, with a root value and subtrees of children with a parent node, represented as a set of linked nodes.

A tree data structure can be defined recursively (locally) as a collection of nodes (starting at a root node), where each node is a data structure consisting of a value, together with a list of references to nodes (the "children"), with the constraints that no reference is duplicated, and none points to the root.[2]


Image of a tree[edit]

Binary tree.svg.png

tree vocabulary[edit]

  • root node
  • parent node
  • child node
  • leaf node

Practical applications of a tree[edit]

  • Trees can be used to store data that has an inherent hierarchical structure. For example, an operating system may use a tree for directories, files and folders in its file management system.
  • They are dynamic, which means that it is easy to add and delete nodes.
  • They are easy to search and sort using standard traversal algorithms.
  • They can be used to process the syntax of statements in natural and programming languages so are commonly used when compiling programming code.

Tree - video example[edit]

This video provides a basic introduction to trees. It also summarizes, very nicely, other data structures. Please keep in mind the example at the beginning is not a binary tree, but binary trees are discussed later. Ignore the discussion about cousins and uncles. It's ridiculous. But the rest of the video is really good.


code sample[edit]

class Node:
    def __init__(self, data):
        self.data = data
        self.children = []

    def add_child(self, child):
        self.children.append(child)

    def __repr__(self):
        return f"Node({self.data})"

class Tree:
    def __init__(self, root_data):
        self.root = Node(root_data)

    def add_node(self, parent_data, child_data):
        parent_node = self.find_node(parent_data)
        if parent_node:
            parent_node.add_child(Node(child_data))
        else:
            print(f"Parent node with data '{parent_data}' not found.")

    def find_node(self, target_data, current_node=None):
        if current_node is None:
            current_node = self.root

        if current_node.data == target_data:
            return current_node

        for child in current_node.children:
            result = self.find_node(target_data, child)
            if result:
                return result

        return None

    def display(self, current_node=None, level=0):
        if current_node is None:
            current_node = self.root

        print(' ' * 4 * level + '|-- ' + str(current_node.data))
        for child in current_node.children:
            self.display(child, level + 1)



    def __repr__(self):
        return f"Tree({self.root})"

# Create a tree with root node data 'A'
tree = Tree('A')

# Add nodes to the tree
tree.add_node('A', 'B')
tree.add_node('A', 'C')
tree.add_node('B', 'D')
tree.add_node('B', 'E')
tree.add_node('C', 'F')
tree.add_node('C', 'G')

# Find a node in the tree
found_node = tree.find_node('F')
print(found_node)  # Output: Node(F)

# Try to add a node with a nonexistent parent
tree.add_node('X', 'Y')  # Output: Parent node with data 'X' not found.

# Display the tree using simple ASCII art
tree.display()

Standards[edit]

  • Describe how trees operate logically (both binary and non-binary).
  • Define the terms: parent, left-child, right-child, subtree, root and leaf.
  • State the result of inorder, postorder and preorder tree traversal.
  • Sketch binary trees.

See Also[edit]

External Links[edit]

high level discussion of binary trees

References[edit]