Vehicle-to-infrastructure (VTI) protocol: Difference between revisions
Mr. MacKenty (talk | contribs) (Created page with "<center> <blockquote style="padding: 5px; background-color: #FFF8DC; border: solid thin gray;"> File:Exclamation.png This is student work which has not yet been approve...") |
Mr. MacKenty (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[file:Studying.png|right|frame|Case study notes<ref>http://www.flaticon.com/</ref>]] | [[file:Studying.png|right|frame|Case study notes<ref>http://www.flaticon.com/</ref>]] | ||
== Introduction == | == Introduction == | ||
Vehicle-to-infrastructure (V2I or v2i) is a communication model that allows vehicles to share information with the components that support a country's highway system. Such components include overhead RFID readers and cameras, traffic lights, lane markers, streetlights, signage and parking meters. V2I communication is typically wireless and bi-directional: data from infrastructure components can be delivered to the vehicle over an ad hoc network and vice versa. Similar to vehicle-to-vehicle (V2V) communication, V2I uses dedicated short range communication (DSRC) frequencies to tranfer data. | |||
In an intelligent transportation system (ITS), V2I sensors can capture infrastructure data and provide travelers with real-time advisories about such things as road conditions, traffic congestion, accidents, construction zones and parking availability. Likewise, traffic management supervision systems can use infrastructure and vehicle data to set variable speed limits and adjust traffic signal phase and timing (SPaT) to increase fuel economy and traffic flow. The hardware, software and firmware that makes communication between vehicles and roadway infrastructure is an important part of all driverless car initiatives. <ref>https://whatis.techtarget.com/definition/vehicle-to-infrastructure-V2I-or-V2X</ref> | |||
== References == | == References == | ||
Line 44: | Line 13: | ||
[[Category:2018 case study]] | [[Category:2018 case study]] | ||
Latest revision as of 06:57, 14 April 2018
Introduction[edit]
Vehicle-to-infrastructure (V2I or v2i) is a communication model that allows vehicles to share information with the components that support a country's highway system. Such components include overhead RFID readers and cameras, traffic lights, lane markers, streetlights, signage and parking meters. V2I communication is typically wireless and bi-directional: data from infrastructure components can be delivered to the vehicle over an ad hoc network and vice versa. Similar to vehicle-to-vehicle (V2V) communication, V2I uses dedicated short range communication (DSRC) frequencies to tranfer data.
In an intelligent transportation system (ITS), V2I sensors can capture infrastructure data and provide travelers with real-time advisories about such things as road conditions, traffic congestion, accidents, construction zones and parking availability. Likewise, traffic management supervision systems can use infrastructure and vehicle data to set variable speed limits and adjust traffic signal phase and timing (SPaT) to increase fuel economy and traffic flow. The hardware, software and firmware that makes communication between vehicles and roadway infrastructure is an important part of all driverless car initiatives. [2]