Binary: Difference between revisions

From Computer Science Wiki
Line 59: Line 59:
== Why is this so important? ==
== Why is this so important? ==


If we can represent numbers as '''1 and 0''', why not represent numbers as '''on and off'''? If we can represent letters as numbers (A = 65, B = 66) couldn't we also say A =  01000001 and B = 01000010?  
If we can represent numbers as '''1 and 0''', why not represent numbers as '''on and off'''? If we can represent letters as numbers (A = 65, B = 66) couldn't we also say A =  01000001 and B = 01000010? We can follow this line of thinking and make north / south, up / down, and low / high. Simple constructions that we can use to represent more complex numbers and even letters.


Binary representation is the essence of how computers work.  
Binary representation is the essence of how computers work.


== Resources ==
== Resources ==

Revision as of 13:40, 22 August 2016

Exclamation.png This is an important concept. You should fully understand this.

This is a basic concept in computer science

In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system or base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). The base-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices. Each digit is referred to as a bit.[1]


Binary[edit]

This is one of the better videos I've seen on binary. Content gratefully used with permission : [2]


Binary translation table[edit]

I find it helpful to draw this table when I must convert binary to base 10. It also helps when looking at the video above.

128 64 32 16 8 4 2 1

Helpful binary game[edit]

Click here for an excellent game demonstrating how binary works


How to add two binary numbers[edit]

Adding binary is straight forward. Line up the numbers as you would if you were adding base-10 numbers.

Remember this:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10, so write a 0 and carry the 1 to the next column.

What you must know[edit]

You must be able to correctly answer the following questions:

  • Define the term: bit
  • Define the term: byte
  • Define the term: binary
  • Define the term: denary/decimal (they refer to the same thing)
  • Define the term: hexadecimal

Why is this so important?[edit]

If we can represent numbers as 1 and 0, why not represent numbers as on and off? If we can represent letters as numbers (A = 65, B = 66) couldn't we also say A = 01000001 and B = 01000010? We can follow this line of thinking and make north / south, up / down, and low / high. Simple constructions that we can use to represent more complex numbers and even letters.

Binary representation is the essence of how computers work.

Resources[edit]

Click here for a slide deck that covers this topic nicely

References[edit]