Machine learning

From Computer Science Wiki
Revision as of 09:00, 8 June 2022 by Bmackenty (talk | contribs)
Case study notes[1]

Introduction[edit]

Using algorithms that iteratively learn from data, machine learning allows computers to find hidden insights without being explicitly programmed where to look. [2] This is important to our case study as it allows self-driving cars to learn from it’s environment and mistakes.

Terminology[edit]

  1. Behavioural data
  2. Cloud delivery models:
    1. Infrastructure as a service (IaaS)
    2. Platform as a service (PaaS)
    3. Software as a service (SaaS)
  3. Cloud deployment models
  4. Collaborative filtering
  5. Content-based filtering
  6. Cost function
  7. F-measure
  8. Hyperparameter
  9. K-nearest neighbour (k-NN) algorithm
  10. Matrix factorization
  11. Mean absolute error (MAE)
  12. Overfitting
  13. Popularity bias
  14. Precision
  15. Recall
  16. Reinforcement learning
  17. Right to anonymity
  18. Right to privacy
  19. Root-mean-square error (RMSE)
  20. Stochastic gradient descent
  21. Training data

Examples[edit]

An excellent, and I truly mean excellent example is MarI/O, a machine learning program that learns how to play mario, and mario kart.

  1. Super Mario World: https://www.youtube.com/watch?v=qv6UVOQ0F44
  2. Mario Kart: https://www.youtube.com/watch?v=S9Y_I9vY8Qw

[3]


References[edit]