Binary tree

From Computer Science Wiki
Revision as of 15:10, 5 December 2016 by Mr. MacKenty (talk | contribs) (Created page with "right|frame|Programming basics<ref>http://www.flaticon.com/</ref> In computer science, a tree is a widely used abstract data type (ADT)—or data structur...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Programming basics[1]

In computer science, a tree is a widely used abstract data type (ADT)—or data structure implementing this ADT—that simulates a hierarchical tree structure, with a root value and subtrees of children with a parent node, represented as a set of linked nodes.

A tree data structure can be defined recursively (locally) as a collection of nodes (starting at a root node), where each node is a data structure consisting of a value, together with a list of references to nodes (the "children"), with the constraints that no reference is duplicated, and none points to the root.[2]


Image of a tree[edit]

Binary tree.svg.png

tree vocabulary[edit]

  • root node
  • parent node
  • child node
  • leaf node

Practical applications of a tree[edit]

  • Trees can be used to store data that has an inherent hierarchical structure. For example, an operating system may use a tree for directories, files and folders in its file management system.
  • They are dynamic, which means that it is easy to add and delete nodes.
  • They are easy to search and sort using standard traversal algorithms.
  • They can be used to process the syntax of statements in natural and programming languages so are commonly used when compiling programming code.

Tree - video example[edit]

This video provides a basic introduction to trees. It also summarizes, very nicely, other data structures. Please keep in mind the example at the beginning is not a binary tree, but binary trees are discussed later. Ignore the discussion about cousins and uncles. It's ridiculous. But the rest of the video is really good.

Standards[edit]

  • Describe how trees operate logically (both binary and non-binary).
  • Define the terms: parent, left-child, right-child, subtree, root and leaf.
  • State the result of inorder, postorder and preorder tree traversal.
  • Sketch binary trees.

See Also[edit]

External Links[edit]

high level discussion of binary trees

References[edit]