Evolution of modern machine translators

From Computer Science Wiki
HL content: Modeling & Simulation[1]

Machine translation, (sometimes referred to by the abbreviation MT) is a sub-field of computational linguistics that investigates the use of software to translate text or speech from one language to another.

On a basic level, MT performs simple substitution of words in one language for words in another, but that alone usually cannot produce a good translation of a text because recognition of whole phrases and their closest counterparts in the target language is needed. [2]

Evolution of machine translators[edit]

  1. Rule-based machine translation
uses dictionaries and a set of linguistic rules to translate between two languages. 
  1. Example-based Machine Translation
uses ready-made phrases as examples instead of repeated translation. 
  1. Statistical Machine Translation
the machine tries to recognise patterns by studying similar texts without the need for dictionaries or rules. 
  1. Neural Machine Translation
uses a large artificial neural network to predict the probability of a sequence of words.

Our ultimate goal[edit]

Instant, perfectly accurate translation. Click here for a funny take on this

Standards[edit]

  • Outline the evolution of modern machine translators.

References[edit]