Programming: Difference between revisions

From Computer Science Wiki
No edit summary
Line 38: Line 38:
* [[Design Patterns]]
* [[Design Patterns]]
* [[Object-Oriented Programming]]
* [[Object-Oriented Programming]]
== Standards ==
{| style="width: 95%; font-size: 12px;" class="wikitable sortable"
|-style="background-color:#E6F9E6;"
| colspan="2" | '''Computational thinking, problem-solving and programming'''
|-
| Identify the procedure appropriate to solving a problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Evaluate whether the order in which activities are undertaken will result in the required outcome.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Explain the role of sub-procedures in solving a problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify when decision-making is required in a specified situation.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify the decisions required for the solution to a specified problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify the condition associated with a given decision in a specified problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Explain the relationship between the decisions and conditions of a system.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Deduce logical rules for real-world situations.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify the inputs and outputs required in a solution.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify pre-planning in a suggested problem and solution.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Explain the need for pre-conditions when executing an algorithm.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Outline the pre- and post-conditions to a specified problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify exceptions that need to be considered in a specified problem solution.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify the parts of a solution that could be implemented concurrently.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Describe how concurrent processing can be used to solve a problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Evaluate the decision to use concurrent processing in solving a problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Identify examples of abstraction.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Explain why abstraction is required in the derivation of computational solutions for a specified situation.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Construct an abstraction from a specified situation.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Distinguish between a real-world entity and its abstraction.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Describe the characteristics of standard algorithms on linear arrays.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Outline the standard operations of collections.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Discuss an algorithm to solve a specific problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Analyse an algorithm presented as a flow chart.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Analyse an algorithm presented as pseudocode.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Construct pseudocode to represent an algorithm.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Suggest suitable algorithms to solve a specific problem.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Deduce the efficiency of an algorithm in the context of its use.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Determine the number of times a step in an algorithm will be performed for given input data.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| State the fundamental operations of a computer.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Distinguish between fundamental and compound operations of a computer.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Explain the essential features of a computer language.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Explain the need for higher level languages.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Outline the need for a translation process from a higher level language to machine executable code.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Define the terms: variable, constant, operator, object.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Define common operators.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Analyse the use of variables, constants and operators in algorithms.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Construct algorithms using loops, branching.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Describe the characteristics and applications of a collection.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Construct algorithms using the access methods of a collection.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Discuss the need for sub-programmes and collections within programmed solutions.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-
| Construct algorithms using pre- defined sub-programmes, one- dimensional arrays and/or collections.|| [[Computational thinking, problem-solving and programming | Computational Thinking]]
|-style="background-color:#E6F9E6;"
|}


== References ==
== References ==

Revision as of 14:46, 16 July 2017

Exclamation.png This is one of the most important ideas you can remember:

Decompose a problem into smaller parts, model a problem with flowcharts. Learn to think sequentially

Programming[1]

Programming is the issuing of instructions to a computer. You must learn how to issue instructions to a computer.

Introduction to programming[edit]

Use of programming languages[edit]

Other important ideas in programming[edit]

References[edit]