Programming

From Computer Science Wiki
Revision as of 01:38, 14 July 2017 by Mr. MacKenty (talk | contribs) (Created page with "<center> <blockquote style="padding: 5px; background-color: #FFF8DC; border: solid thin gray;"> File:Exclamation.png This is one of '''the most important ideas''' you c...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exclamation.png This is one of the most important ideas you can remember:

Decompose a problem into smaller parts, model a problem with flowcharts. Learn to think sequentially

Computational thinking, problem-solving and programming[1]


Thinking procedurally[edit]

Thinking logically[edit]

Thinking ahead[edit]

Thinking concurrently[edit]

Thinking abstractly[edit]

Connecting computational thinking and program design[edit]

Introduction to programming[edit]

Use of programming languages[edit]

Other important ideas in programming[edit]

Standards[edit]

Computational thinking, problem-solving and programming
Identify the procedure appropriate to solving a problem. Computational Thinking
Evaluate whether the order in which activities are undertaken will result in the required outcome. Computational Thinking
Explain the role of sub-procedures in solving a problem. Computational Thinking
Identify when decision-making is required in a specified situation. Computational Thinking
Identify the decisions required for the solution to a specified problem. Computational Thinking
Identify the condition associated with a given decision in a specified problem. Computational Thinking
Explain the relationship between the decisions and conditions of a system. Computational Thinking
Deduce logical rules for real-world situations. Computational Thinking
Identify the inputs and outputs required in a solution. Computational Thinking
Identify pre-planning in a suggested problem and solution. Computational Thinking
Explain the need for pre-conditions when executing an algorithm. Computational Thinking
Outline the pre- and post-conditions to a specified problem. Computational Thinking
Identify exceptions that need to be considered in a specified problem solution. Computational Thinking
Identify the parts of a solution that could be implemented concurrently. Computational Thinking
Describe how concurrent processing can be used to solve a problem. Computational Thinking
Evaluate the decision to use concurrent processing in solving a problem. Computational Thinking
Identify examples of abstraction. Computational Thinking
Explain why abstraction is required in the derivation of computational solutions for a specified situation. Computational Thinking
Construct an abstraction from a specified situation. Computational Thinking
Distinguish between a real-world entity and its abstraction. Computational Thinking
Describe the characteristics of standard algorithms on linear arrays. Computational Thinking
Outline the standard operations of collections. Computational Thinking
Discuss an algorithm to solve a specific problem. Computational Thinking
Analyse an algorithm presented as a flow chart. Computational Thinking
Analyse an algorithm presented as pseudocode. Computational Thinking
Construct pseudocode to represent an algorithm. Computational Thinking
Suggest suitable algorithms to solve a specific problem. Computational Thinking
Deduce the efficiency of an algorithm in the context of its use. Computational Thinking
Determine the number of times a step in an algorithm will be performed for given input data. Computational Thinking
State the fundamental operations of a computer. Computational Thinking
Distinguish between fundamental and compound operations of a computer. Computational Thinking
Explain the essential features of a computer language. Computational Thinking
Explain the need for higher level languages. Computational Thinking
Outline the need for a translation process from a higher level language to machine executable code. Computational Thinking
Define the terms: variable, constant, operator, object. Computational Thinking
Define common operators. Computational Thinking
Analyse the use of variables, constants and operators in algorithms. Computational Thinking
Construct algorithms using loops, branching. Computational Thinking
Describe the characteristics and applications of a collection. Computational Thinking
Construct algorithms using the access methods of a collection. Computational Thinking
Discuss the need for sub-programmes and collections within programmed solutions. Computational Thinking
Construct algorithms using pre- defined sub-programmes, one- dimensional arrays and/or collections. Computational Thinking

References[edit]

Separate into simpler constituents.

Produce a plan, simulation or model.

Apply knowledge or rules to put theory into practice.

Provide an answer from a number of possibilities. Recognize and state briefly a distinguishing fact or feature.

Assess the implications and limitations; make judgments about the ideas, works, solutions or methods in relation to selected criteria.

Give a detailed account including reasons or causes.

Reach a conclusion from the information given.

Give a brief account.

anomalous or exceptional conditions requiring special processing – often changing the normal flow of program execution

Give a detailed account or picture of a situation, event, pattern or process.

Develop information in a diagrammatic or logical form.

Make clear the differences between two or more concepts or items.

Offer a considered and balanced review that includes a range of arguments, factors or hypotheses. Opinions or conclusions should be presented clearly and supported by appropriate evidence.

Break down in order to bring out the essential elements or structure. To identify parts and relationships, and to interpret information to reach conclusions.

Propose a solution, hypothesis or other possible answer.

The circumstances that form the setting for an event, statement, or idea, and in terms of which it can be fully understood and assessed.

Obtain the only possible answer.

A unit of abstract mathematical system subject to the laws of arithmetic.

Give a specific name, value or other brief answer without explanation or calculation.

Give a specific name, value or other brief answer without explanation or calculation.

Give the precise meaning of a word, phrase, concept or physical quantity.